P-doped carbon nano-powders for fingerprint imaging

Resumen

A simple, fast, and laboratory efficient doped P carbon nanoparticles synthesis is developed for fingerprint imaging, using 1,3-dihydroxyacetone and di-phosphorous pentoxide. Fluorescence nanoparticles, with an average size of 230 nm were obtained, without additional energy input or external heating. ATR, solid NMR, XPS and fluorescence spectroscopy revealed their surface functionalization; a reaction mechanism is proposed. Fluorescence measurements exhibited a maximum emission band at ca. 495 nm, when excited at 385 nm. The images obtained, on different surfaces such as mobile telephone screen, magnetic band and metallic surface of a credit card and a Euro banknote treated with the obtained nano-powders allows us to record positive matches, confirming that the experimental results illustrate the effectiveness of proposed method. © 2018 Elsevier B.V.

Publicación
Talanta